Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
1.
Eur J Neurosci ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576168

RESUMO

Dual tasks (DTs) combining walking with a cognitive task can cause various levels of cognitive-motor interference, depending on which brain resources are recruited in each case. However, the brain activation and functional connectivity underlying cognitive-motor interferences remain to be elucidated. Therefore, this study investigated the neural correlation during different DT conditions in 40 healthy young adults (mean age: 27.53 years, 28 women). The DTs included walking during subtraction or N-Back tasks. Cognitive-motor interference was calculated, and brain activation and functional connectivity were analysed. Portable functional near-infrared spectroscopy was utilized to monitor haemodynamics in the prefrontal cortex (PFC), motor cortex and parietal cortex during each task. Walking interference (decrease in walking speed during DT) was greater than cognitive interference (decrease in cognitive performance during DT), regardless of the type of task. Brain activation in the bilateral PFC and parietal cortex was greater for walking during subtraction than for standing subtraction. Furthermore, brain activation was higher in the bilateral motor and parietal and PFCs for walking during subtraction than for walking alone, but only increased in the PFC for walking during N-Back. Coherence between the bilateral lateral PFC and between the left lateral PFC and left motor cortex was significantly greater for walking during 2-Back than for walking. The PFC, a critical brain region for organizing cognitive and motor functions, played a crucial role in integrating information coming from multiple brain networks required for completing DTs. Therefore, the PFC could be a potential target for the modulation and improvement of cognitive-motor functions during neurorehabilitation.

2.
Chin Med ; 19(1): 61, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594761

RESUMO

BACKGROUND: Chronic inflammation and metabolic dysfunction are key features of systemic aging, closely associated with the development and progression of age-related metabolic diseases. Bazi Bushen (BZBS), a traditional Chinese medicine used to alleviate frailty, delays biological aging by modulating DNA methylation levels. However, the precise mechanism of its anti-aging effect remains unclear. In this study, we developed the Energy Expenditure Aging Index (EEAI) to estimate biological age. By integrating the EEAI with transcriptome analysis, we aimed to explore the impact of BZBS on age-related metabolic dysregulation and inflammation in naturally aging mice. METHODS: We conducted indirect calorimetry analysis on five groups of mice with different ages and utilized the data to construct EEAI. 12 -month-old C57BL/6 J mice were treated with BZBS or ß-Nicotinamide Mononucleotide (NMN) for 8 months. Micro-CT, Oil Red O staining, indirect calorimetry, RNA sequencing, bioinformatics analysis, and qRT-PCR were performed to investigate the regulatory effects of BZBS on energy metabolism, glycolipid metabolism, and inflammaging. RESULTS: The results revealed that BZBS treatment effectively reversed the age-related decline in energy expenditure and enhanced overall metabolism, as indicated by the aging index of energy expenditure derived from energy metabolism parameters across various ages. Subsequent investigations showed that BZBS reduced age-induced visceral fat accumulation and hepatic lipid droplet aggregation. Transcriptomic analysis of perirenal fat and liver indicated that BZBS effectively enhanced lipid metabolism pathways, such as the PPAR signaling pathway, fatty acid oxidation, and cholesterol metabolism, and improved glycolysis and mitochondrial respiration. Additionally, there was a significant improvement in inhibiting the inflammation-related arachidonic acid-linoleic acid metabolism pathway and restraining the IL-17 and TNF inflammatory pathways activated via senescence associated secretory phenotype (SASP). CONCLUSIONS: BZBS has the potential to alleviate inflammation in metabolic organs of naturally aged mice and maintain metabolic homeostasis. This study presents novel clinical therapeutic approaches for the prevention and treatment of age-related metabolic diseases.

3.
Angew Chem Int Ed Engl ; : e202402343, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639055

RESUMO

Localized excitation in traditional organic photocatalysts typically prevents the generation and extraction of photo-induced free charge carriers, limiting their activity enhancement under illumination. Here, we enhance delocalized photoexcitation of small molecular photovoltaic catalysts by weakening their electron-phonon coupling via rational fluoro-substitution. The optimized 2FBP-4F catalyst we develop here exhibits a minimized Huang-Rhys factor of 0.35 in solution, high dielectric constant and strong crystallization in the solid state. As a result, the energy barrier for exciton dissociation is decreased, and more importantly, polarons are unusually observed in 2FBP-4F nanoparticles (NPs). With the increased hole transfer efficiency and prolonged carrier lifetime highly related to enhanced exciton delocalization, the PM6:2FBP-4F heterojunction NPs at varied concentration exhibit much higher optimized photocatalytic activity (207.6~561.8 mmol h-1 g-1) for hydrogen evolution than the control PM6:BP-4F and PM6:2FBP-6F NPs, as well as other reported photocatalysts under simulated solar light (AM1.5G, 100 mW cm-2).

4.
Crit Rev Oncol Hematol ; : 104359, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38615871

RESUMO

Ferroptosis is an unconventional programmed cell death mode caused by phospholipid peroxidation dependent on iron. Emerging immunotherapies (especially immune checkpoint inhibitors) have the potential to enhance lung cancer patients' long-term survival. Although immunotherapy has yielded significant positive applications in some patients, there are still many mechanisms that can cause lung cancer cells to evade immunity, thus leading to the failure of targeted therapies. Immune-tolerant cancer cells are insensitive to conventional death pathways such as apoptosis and necrosis, whereas mesenchymal and metastasis-prone cancer cells are particularly vulnerable to ferroptosis, which plays a vital role in mediating immune tolerance resistance by tumors and immune cells. As a result, triggering lung cancer cell ferroptosis holds significant therapeutic potential for drug-resistant malignancies. Here, we summarize the mechanisms underlying the suppression of ferroptosis in lung cancer, highlight its function in the lung cancer immune microenvironment, and propose possible therapeutic strategies.

5.
ACS Omega ; 9(15): 17626-17635, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38645375

RESUMO

Block H, located in western Hubei-eastern Chongqing, remains at a low exploration degree. Characterized by its complex structural attributes, the area presents adverse conditions such as a thin thickness of high-quality shale reservoir, rapid lateral formation occurrence, and poor stratigraphic correlation, challenging conventional geosteering methods. The primary shale gas reservoir in Block H corresponds to the Upper Permian Wujiaping Formation. To ensure that the shale gas horizontal wells in this block effectively penetrate high-quality gas reservoirs, this study delves into the geological characteristics of this stratigraphic unit, identifies principal challenges faced by current geosteering techniques, and introduces a tailored technical solution. This solution encompasses the application of real-time 3D geological modeling to track while drilling, identification of steering marker layers, optimization of steerable tools, and optimization of the steering trajectory while drilling. In the technology of optimization of the steering trajectory while drilling, a trajectory control calculation model based on the average angle technique was established for the first time. Additionally, a sectional control chart for marker layers and well inclination under different deflecting constraints was established. These methods have solved the problems of large error in target prediction and poor trajectory control effects by using the equal thickness method alone. The findings from this study can significantly enhance target prediction and trajectory control accuracy in complex structural areas, offering pivotal insights for the proficient development of analogous shale gas reservoirs in the future.

6.
Chem Sci ; 15(10): 3758-3766, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38455015

RESUMO

Chirality transfer for natural chiral biomolecules can reveal the indispensable role of chiral structures in life and can be used to develop the chirality-sensing biomolecular recognition. Here, we report the synthesis and characterization of a series of achiral supramolecular organic frameworks (SOF-1, SOF-2, and SOF-3), constructed from cucurbit[8]uril (CB[8]) and tetraphenylethene (TPE) derivatives (1, 2, and 3), respectively, as chirality-sensing platforms to explore their chirality transfer mechanism for peptides in water. Given the right-handed (P) and left-handed (M) rotational conformation of TPE units and the selective binding of CB[8] to aromatic amino acids, these achiral SOFs can be selectively triggered in water by peptides containing N-terminal tryptophan (W) and phenylalanine (F) residues into their P- or M-rotational conformation, exhibiting significantly different circular dichroism (CD) spectra. Although various peptides have the same l-type chiral configuration, they can induce positive CD signals of SOF-1 and negative CD signals of SOF-2 and SOF-3, respectively. Based on the structural analysis of the linkage units between CB[8] and TPE units in these SOFs, a "gear-driven"-type chirality transfer mechanism has been proposed to visually illustrate the multiple-step chirality transfer process from the recognition site in the CB[8]'s cavity to TPE units. Furthermore, by utilizing the characteristic CD signals generated through the "gear-driven"-type chirality transfer, these SOFs can serve as chiroptical sensor arrays to effectively recognize and distinguish various peptides based on their distinctive CD spectra.

7.
Am J Transl Res ; 16(2): 477-486, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463583

RESUMO

OBJECTIVE: To observe the effects of neoadjuvant chemotherapy combined with radical laparoscopic surgery with quality nursing care on the clinical efficacy and sex hormones of cervical cancer patients. METHODS: The clinical data of 107 patients with cervical cancer admitted to Yanan University Affiliated Hospital between January 2017 and January 2020 were retrospectively analyzed in this study. Among them, 50 patients received only laparoscopic radical surgery (surgical group), and the other 57 received neoadjuvant chemotherapy combined with laparoscopic radical surgery (Joint group); patients in both groups received quality nursing care. The baseline and surgical data of the two groups were compared, and the changes in tumor markers and sex hormones before and after treatment were analyzed. Cox regression was used to analyze the independent prognostic factors affecting patients' 2-year survival. RESULTS: The patients in the two groups did not show statistical differences in baseline and surgical data (all P > 0.05). After treatment, the levels of squamous cell carcinoma antigen (SCC-Ag), carcinoembryonic antigen (CEA), and serum glycan antigen 125 (CA125) were significantly reduced in both groups. However, the reduction was more pronounced in the joint group than that in the surgical group (P < 0.0001). Meanwhile, estrogen (E2) levels decreased more significantly in the Joint group, while follicle-stimulating hormone (FSH) and luteinizing hormone (LH) increased more significantly (all P < 0.0001). Multifactorial Cox regression analysis revealed that E2, LH and SCC-Ag were independent prognostic factors affecting 2-year survival (all P < 0.05). CONCLUSION: Neoadjuvant chemotherapy combined with laparoscopic radical surgery is more effective in reducing the levels of tumor markers and significantly affects the levels of sex hormones. E2, LH, and SCC-Ag are the independent prognostic factors for 2-year survival in patients with cervical cancer. This study provides evidence to support the comprehensive treatment of cervical cancer.

8.
ACS Appl Mater Interfaces ; 16(8): 10116-10125, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38381070

RESUMO

Graphite (Gr) anode, which is endowed with high electronic conductivity and low volume expansion after Li-ion intercalation, establishes the basis for the success of rocking-chair Li-ion batteries (LIBs). However, due to the high barrier of the Li-ion desolvation process, sluggish transport of Li ions through the solid electrolyte interphase (SEI) and the high freezing points of electrolytes, the Gr anode still suffers from great loss of capacity and severe polarization at low temperature. Here, 1,2-diethoxyethane (DEE) with an intrinsically wide liquid region and weak solvation ability is applied as an electrolyte solvent for LIBs. By rationally designing the additives of electrolytes, an intact SEI with fast Li-ion conductivity is constructed, enabling the co-intercalation-free Gr anode with long-term stability (91.8% after 500 cycles) and impressive low-temperature characteristics (82.6% capacity retention at -20 °C). Coupled with LiFePO4 and LiNi0.8Mn0.1Co0.1O2 cathodes, the optimized electrolyte also demonstrates low polarization under -20 °C. Our work offers a feasible approach to enable ether-based electrolytes for low-temperature LIBs.

9.
Am J Pathol ; 194(5): 735-746, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38382842

RESUMO

Twenty-five percent of cervical cancers are classified as endocervical adenocarcinomas (EACs), which comprise a highly heterogeneous group of tumors. A histopathologic risk stratification system known as the Silva pattern system was developed based on morphology. However, accurately classifying such patterns can be challenging. The study objective was to develop a deep learning pipeline (Silva3-AI) that automatically analyzes whole slide image-based histopathologic images and identifies Silva patterns with high accuracy. Initially, a total of 202 patients with EACs and histopathologic slides were obtained from Qilu Hospital of Shandong University for developing and internally testing the Silva3-AI model. Subsequently, an additional 161 patients and slides were collected from seven other medical centers for independent testing. The Silva3-AI model was developed using a vision transformer and recurrent neural network architecture, utilizing multi-magnification patches, and its performance was evaluated based on a class-specific area under the receiver-operating characteristic curve. Silva3-AI achieved a class-specific area under the receiver-operating characteristic curve of 0.947 for Silva A, 0.908 for Silva B, and 0.947 for Silva C on the independent test set. Notably, the performance of Silva3-AI was consistent with that of professional pathologists with 10 years' diagnostic experience. Furthermore, the visualization of prediction heatmaps facilitated the identification of tumor microenvironment heterogeneity, which is known to contribute to variations in Silva patterns.


Assuntos
Adenocarcinoma , Aprendizado Profundo , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/patologia , Redes Neurais de Computação , Curva ROC , Adenocarcinoma/patologia , Microambiente Tumoral
12.
Nat Mater ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287128

RESUMO

π-Conjugated polymers (CPs) have broad applications in high-performance optoelectronics, energy storage, sensors and biomedicine. However, developing green and efficient methods to precisely synthesize alternating CP structures on a large scale remains challenging and critical for their industrialization. Here a room-temperature, scalable and homogeneous Suzuki-Miyaura-type polymerization reaction is developed with broad generality validated for 24 CPs including donor-donor, donor-acceptor and acceptor-acceptor connectivities, yielding device-quality polymers with high molecular masses. Furthermore, the polymerization protocol significantly reduces homocoupling structural defects, yielding more structurally regular and higher-performance electronic materials and optoelectronic devices than conventional thermally activated polymerizations. Experimental and theoretical studies reveal that a borate transmetalation process plays a key role in suppressing protodeboronation, which is critical for large-scale structural regularity. Thus, these results provide a general polymerization tool for the scalable production of device-quality CPs with alternating structural regularity.

13.
Mater Horiz ; 11(5): 1283-1293, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38165892

RESUMO

Naphthalene diimide derivatives show great potential for application in neutral aqueous organic redox flow batteries (AORFBs) due to their highly conjugated molecular structure and stable two-electron storage capacity. However, the two-electron redox process of naphthalene diimides typically occurs via two separate steps with the transfer of one electron per step ("two-step two-electron" transfer process), which leads to an inevitable loss of voltage and energy. Herein, we report a novel regional charge buffering strategy that utilizes the core-substituted electron-donating group to adjust the redox properties of naphthalene diimides, realizing two electron transfer via a single-step redox process ("one-step two-electron" transfer process). The symmetrical battery testing of NDI-DEtOH revealed exceptional intrinsic stability lasting for 11 days with a daily decay rate of only 0.11%. Meanwhile, AORFBs with NDI-DMe/FcNCl and NDI-DEtOH/FcNCl exhibited a remarkable 40% improvement in peak power density at 50% state of charge (SOC) in comparison to NDI/FcNCl-based AORFBs. In addition, the battery's energy efficiency has increased by 24%, resulting in much more stable output power and significantly improved energy efficiency. These results are of great significance to practical applications of AORFBs.

14.
Nat Commun ; 15(1): 2, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169462

RESUMO

Chiral sensing of single molecules is vital for the understanding of chirality and their applications in biomedicine. However, current technologies face severe limitations in achieving single-molecule sensitivity. Here we overcome these limitations by designing a tunable chiral supramolecular plasmonic system made of helical oligoamide sequences (OS) and nanoparticle-on-mirror (NPoM) resonator, which works across the classical and quantum regimes. Our design enhances the chiral sensitivity in the quantum tunnelling regime despite of the reduced local E-field, which is due to the strong Coulomb interactions between the chiral OSs and the achiral NPoMs and the additional enhancement from tunnelling electrons. A minimum of four molecules per single-Au particle can be detected, which allows for the detection of an enantiomeric excess within a monolayer, manifesting great potential for the chiral sensing of single molecules.

15.
Bioresour Technol ; 394: 130299, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185446

RESUMO

Gibberellic acid (GA3), produced industrially by Fusarium fujikuroi, stands as a crucial plant growth regulator extensively employed in the agriculture filed while limited understanding of the global metabolic network hinders researchers from conducting rapid targeted modifications. In this study, a small-molecule compounds-based targeting technology was developed to increase GA3 production. Firstly, various small molecules were used to target key nodes of different pathways and the result displayed that supplement of terbinafine improved significantly GA3 accumulation, which reached to 1.08 g/L. Subsequently, lipid and squalene biosynthesis pathway were identified as the key pathways influencing GA3 biosynthesis by transcriptomic analysis. Thus, the strategies including in vivo metabolic engineering modification and in vitro supplementation of lipid substrates were adopted, both contributed to an enhanced GA3 yield. Finally, the engineered strain demonstrated the ability to achieve a GA3 yield of 3.24 g/L in 5 L bioreactor when utilizing WCO as carbon source and feed.


Assuntos
Fusarium , Giberelinas , Fermentação , Fusarium/genética , Fusarium/química , Reatores Biológicos , Lipídeos
16.
Arch Virol ; 169(2): 26, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214770

RESUMO

Pigeons can be infected with various RNA viruses, and their innate immune system responds to viral infection to establish an antiviral response. Mitochondrial antiviral signaling protein (MAVS), an important adaptor protein in signal transduction, plays a pivotal role in amplifying the innate immune response. In this study, we successfully cloned pigeon MAVS (piMAVS) and performed a bioinformatics analysis. The results showed that the caspase recruitment domain (CARD) and transmembrane (TM) domain are highly conserved in poultry and mammals but poorly conserved in other species. Furthermore, we observed that MAVS expression is upregulated both in pigeons and pigeon embryonic fibroblasts (PEFs) upon RNA virus infection. Overexpression of MAVS resulted in increased levels of ß-interferon (IFN-ß), IFN-stimulated genes (ISGs), and interleukin (ILs) mRNA and inhibited Newcastle disease virus (NDV) replication. We also found that piMAVS and human MAVS (huMAVS) induced stronger expression of IFN-ß and ISGs when compared to chicken MAVS (chMAVS), and this phenomenon was also reflected in the degree of inhibition of NDV replication. Our findings demonstrate that piMAVS plays an important role in repressing viral replication by regulating the activation of the IFN signal pathway in pigeons. This study not only sheds light on the function of piMAVS in innate immunity but also contributes to a more comprehensive understanding of the innate immunity system in poultry. Our data also provide unique insights into the differences in innate immunity between poultry and mammal.


Assuntos
Columbidae , Imunidade Inata , Transdução de Sinais , Animais , Humanos , Antivirais , Interferon beta/genética , Interferon beta/metabolismo , Mamíferos , Vírus da Doença de Newcastle
17.
Biotechnol Lett ; 46(1): 37-46, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38064043

RESUMO

Metabolic Engineering of yeast is a critical approach to improving the production capacity of cell factories. To obtain genetically stable recombinant strains, the exogenous DNA is preferred to be integrated into the genome. Previously, we developed a Golden Gate toolkit YALIcloneNHEJ, which could be used as an efficient modular cloning toolkit for the random integration of multigene pathways through the innate non-homologous end-joining repair mechanisms of Yarrowia lipolytica. We expanded the toolkit by designing additional building blocks of homologous arms and using CRISPR technology. The reconstructed toolkit was thus entitled YALIcloneHR and designed for gene-specific knockout and integration. To verify the effectiveness of the system, the gene PEX10 was selected as the target for the knockout. This system was subsequently applied for the arachidonic acid production, and the reconstructed strain can accumulate 4.8% of arachidonic acid. The toolkit will expand gene editing technology in Y. lipolytica, which would help produce other chemicals derived from acetyl-CoA in the future.


Assuntos
Sistemas CRISPR-Cas , Yarrowia , Sistemas CRISPR-Cas/genética , Yarrowia/genética , Yarrowia/metabolismo , Ácido Araquidônico/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes , Engenharia Metabólica
18.
Angew Chem Int Ed Engl ; 63(1): e202316348, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37970653

RESUMO

Structural dimensionality and electronic dimensionality play a crucial role in determining the type of excitonic emission in hybrid metal halides (HMHs). It is important but challenging to achieve free exciton (FE) emission in zero-dimensional (0D) HMHs based on the control over the electronic dimensionality. In this work, a quasi-0D HMH (C7 H15 N2 Br)2 PbBr4 with localized electronic dimensionality is prepared as a prototype model. With increasing pressure onto (C7 H15 N2 Br)2 PbBr4 , the broad and weak self-trapped exciton (STE) emission at ambient conditions is considerably enhanced before 3.6 GPa, which originates from more distorted [PbBr4 ]2- seesaw units upon compression. Notably, a narrow FE emission in (C7 H15 N2 Br)2 PbBr4 appears at 3.6 GPa, and then this FE emission is gradually strengthened up to 8.4 GPa. High pressure structural characterizations reveal that anisotropic contraction of (C7 H15 N2 Br)2 PbBr4 results in a noticeable reduction in the distance between adjacent [PbBr4 ]2- seesaw units, as well as an obvious enhancement of crystal stiffness. Consequently, the electronic connectivity in (C7 H15 N2 Br)2 PbBr4 is sufficiently promoted above 3.6 GPa, which is also supported with theoretical calculations. The elevation of electronic connectivity and enhanced stiffness together lead to pressure-induced FE emission and subsequent emission enhancement in quasi-0D (C7 H15 N2 Br)2 PbBr4 .

19.
Adv Mater ; 36(5): e2308909, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37939009

RESUMO

Controlling vertical phase separation of the active layer to enable efficient exciton dissociation and charge carrier transport is crucial to boost power conversion efficiencies (PCEs) of pseudoplanar heterojunction (PPHJ) organic solar cells (OSCs). However, how to optimize the vertical phase separation of PPHJ OSCs via molecule design is rarely reported yet. Herein, ternary polymerization strategy is employed to develop a series of polymer donors, DL1-DL4, and regulate their solubility, molecular aggregation, molecular orientation, and miscibility, thus efficiently manipulating vertical phase separation in PPHJ OSCs. Among them, DL1 not only has enhanced solubility, inhibited molecular aggregation and partial edge-on orientation to facilitate acceptor molecules, Y6, to permeate into polymer layer and increase donor/acceptor interfaces, but also sustains high crystallinity and appropriate miscibility with Y6 to acquire ordered molecular packing, thus achieving optimized vertical phase separation to well juggle exciton dissociation and charge transport in PPHJ devices. Therefore, DL1/Y6 based PPHJ OSCs gain the best exciton dissociation probability, highest charge carrier mobilities and weakest charge recombination, and thus afford an impressive PCE of 19.10%, which is the record value for terpolymer donors. It demonstrates that ternary polymerization is an efficient method to optimize vertical phase separation in PPHJ OSCs for high PCEs.

20.
Phytochem Anal ; 35(2): 239-253, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37779216

RESUMO

INTRODUCTION: Scutellaria baicalensis Georgi, a traditional Chinese medicine, is widely applied to treat various diseases among people, especially in East Asia. However, the specific active compounds in S. baicalensis aqueous extracts (SBAEs) responsible for the hypoglycemic and hypolipidemic properties as well as their potential mechanisms of action remain unclear. OBJECTIVES: This work aimed to explore the potential hypoglycemic and hypolipidemic compounds from SBAE and their potential mechanisms of action. METHODOLOGY: The in vitro inhibitory tests against lipase and α-glucosidase, and the effects of SBAE on glucose consumption and total triglyceride content in HepG2 cells were first performed to evaluate the hypoglycemic and hypolipidemic effects. Then, affinity ultrafiltration liquid chromatography-mass spectrometry (LC-MS) screening strategy with five drug targets, including α-glucosidase, α-amylase, protein tyrosine phosphatase 1B (PTP1B), lipase and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) was developed to screen out the potential active constituents from SBAE, and some representative active compounds were further validated. RESULTS: SBAE displayed noteworthy hypoglycemic and hypolipidemic properties, and 4, 10, 4, 8, and 8 potential bioactive components against α-amylase, α-glucosidase, PTP1B, HMGCR, and lipase were initially screened out, respectively. The interaction network was thus constructed between the potential bioactive compounds screened out and their corresponding drug targets. Among them, baicalein, wogonin, and wogonoside were revealed to possess remarkable hypoglycemic and hypolipidemic effects. CONCLUSION: The potential hypolipidemic and hypoglycemic bioactive compounds in SBAE and their mode of action were initially explored through ligand-target interactions by combining affinity ultrafiltration LC-MS strategy with five drug targets.


Assuntos
Scutellaria baicalensis , Ultrafiltração , Humanos , alfa-Glucosidases , Hipoglicemiantes/farmacologia , Lipase , alfa-Amilases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...